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Jeffrey A. Estefan”  and P. Daniel Burkhart”’
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California

An error budget analysis is presented which quantifies the effects of
different error sources in the orbit determination process when the
enhanced orbit determination filter, recently developed, is used to reduce
radio metric data. The enhanced filter strategy differs from more
traditional filtering methods in that nearly all of the principal ground
system calibration errors affecting the data are represented as filter
parameters. Error budget computations were performed for a Mars
Observer interplanetary cruise scenario for cases in which only X-band
(8.4 -GHz) Doppler data were used to determine the spacecraft’s orbit, X-
band ranging data were used exclusively, and a combined set in which
the ranging data were used in addition to the Doppler data. In all three
cases, the fifter  model was assumed to be a correct representation of the
physical world. Random nongravitational accelerations were found to be
the largest source of error contributing to the individual error budgets.
Other significant contributors, depending on the data strategy used, were
solar radiation pressure coefficient uncertainty, random Earth-orientation
calibration errors, and Deep Space Network (DSN) station location
uncertainty,

INTRODUCTION

Development of improved navigation techniques which utilize radio Doppler and
ranging data acquired from NASA’s Deep Space Network (DSN) have received
considerable study in recent years, as these data types are routinely collected in tracking,
telemetry, and command operations. Furthermore, the availability of high-speed
workstation computers has made possible the use of computationally  intensive data
processing modes for reducing all radio metric data. A new sequential data filtering
strategy currently under study is the enhanced orbit deterrninationfilter,  in which most if
not all of the major systematic ground system calibration error sources are treated as filter
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(estimated) parameters, along with the spacecraft trajectory parameters. This strategy
differs from the current practice, in which the ground system calibration error sources are
represented as unestimated bias parameters, accounted for only when computing the error
covariartce of the filter parameters.

The motivation behind the enhanced filter is not so much to improve upon the a priori
ground system calibrations, but to incorporate a more accurate model of the physical
world into the filter.1 Previous studies suggest that medium-to-high navigation
accuracies (40 to 15 nrad in an angular sense) are achievable when the enhanced orbit
determination filter is used in conjunction with X-band (8.4-GHz) Doppler and ranging.z
Studies are also being conducted to demonstrate the utility of this new filtering strategy
with actual flight data acquired from the Galileo spacecraft.q Critical to understanding
the potential benefits and/or deficiencies of this type of orbit determination filter is the
development of an error budget, which catalogs the contributions of a particular error
source or group of error sources to the estimation errors. This form of sensitivity analysis
identifies the major sources of error and where future work may need to be focused in
order to improve overall navigation system performance.

This paper first reviews the fundamental concepts of reduced-order filtering theory,
essential for sensitivity analysis and error budget development. The theory is then
applied to the development of an error budget for a Mars Observer inte@metary cruise
scenario in which the enhanced orbit determination filter is used to reduce X-band
Doppler and ranging data. The trajectory characteristics of this scenario are reviewed
along with the data acquisition strategies. The filter model is described and error budgets
are given for three different data strategies: X-band Doppler only, X-band ranging only,
and X-band Doppler plus ranging. For this initial study, the filter model is assumed to be
a correct representation of the physical world.

REDUCED-ORDER FILTERING~.

In some navigation applications, it is not practical to implement a full-order or truly
optimal filter when the system model, with all major error and noise sources, is of high-
order. This is often the case in applications such as a multisensory avionics navigation
system, in which there are memory limitations in the onboard flight computer.d
Moreover, it is implicitly assumed in the development of the filter equations that exact
descriptions of the system dynamics, error statistics, and the measurement process are
known; unfortunately, this is rarely true in practices Use of reduced-order jiltering
techniques allows the analyst to obtain estimates of key parameters of interest, with
reduced computational burden and with moderate complexity in the filter model.5$ Thus,
reduced-order, or suboptimal,  filters are the result of design trade-offs in which the
designer performs a sensitivity analysis to determine which sources of error are most
critical to overall system performance.

In general, the spacecraft orbit determination process is executed entirely on the
ground and thus flight computer memory limitations are not a significant factor.
Nevertheless, there are reasons for not always using a full-order optimal filter for
spacecraft orbit determination. Some of the reasons include: (1) certain parameters, such
as fiducial station locations, may be held fixed in order to define a reference frame and/or
length scale; (2) there may be a lack of adequate models for an actual physical effect; (3)
the existence of computational limitations when attempting to adjust parameters of high
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,. order, such as the coefficients in a gravity field: or (4) if estimated, the computed

uncertainty in model parameters would be reduced far below the level warranted by
model accuracy.7~8

JWter Evaluat km Modes

There are a number of error analysis methods which can be used to evaluate filter
models and predict filter performance, Reduced-order error analysis techniques enable an
analyst to study the effects of using incorrect a priori statistics, data-noise/data-weight
assumptions, or process noise models on the filter design, This is usually referred to as
the general jilter  evaluation mode and accomplished by establishing a fully detailed
reference model (a truth model) against which the behavior of a fiiter can be compared.~
If the filter is optimal, then the filter and truth models coincide. If the filter is suboptimal,
then the filter model is of equal or lower order (i.e., reduced-order) than the truth model
and possibly (but not necessarily) represents a subset of the states of the truth models In
practice, a fully detailed truth model may be difficult to develop and thus one typically
evaluates a range of “reasonable” truth models to assess whether the filter results are
especially sensitive to a particular element(s) of the filtering strategy being used.7 The
objective is to design a filter model to achieve the best possible accuracy, but which is
also robust, so that its performance will not be adversely affected by the use of slightly
incorrect filter parameters. In the design process, the filter structure and the truth model
remain fixed while repeated adjustments are made to the a priori statistics, data noise
values, or process noise values, until acceptable behavior is achieved.6

In a special case of reduced-order error analysis, often referred to as a consider state
analysis, various systematic error sources are treated as unmodeled parameters which are
not estimated, but whose effects are accounted for (i.e., “considered”) in computing the
error covariance of the estimated parameters.g” In a consider state analysis, the sensitivity
of the estimated parameter set to various unmodeled consider parameters can be

- . computed via the partial derivatives of the state estimate with respect to the consider
parameter set.10 Depending on the magnitude of the resulting sensitivities, the filter-
computed estimation error covariance is modified to account for the unmodelcxi effects in
order to generate a more realistic estimate of predicted navigation performance. The
filter has no knowledge about the contribution of the unmodeled parameters to the
uncertainty in the state estimate since the modified covariance (the consider covariance),
which includes effects from both the estimated and consider parameters, is not fed back
to the filter. Reduced-order filters of this type have been known to experience failure
modes, such as cases in which the addition of data yields an increase in the consider
covariance,  or cases when the consider covariance propagates to an unreasonably large
result over time. In these instances, it may be necessary to empirically “tune” the filter
(e.g., adjust data weights, model assumptions, etc.) to obtain useful estimates. A
mathematical description of these so-called “failure modes” and suggested remedies is
described by Scheeres.g

Restricting the discussion to the filter measurement update equations, the
mathematical model presented here is the covarianceform  of the measurement update for

“ This is the more traditional filtering method  most often used in practical applications of interplanetary navigation (see
introductory remarks), operationally referred to as the cofrsidm  option.
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scalar measurements. Let ~ represent the state estimate and P represent the error
covariance matrix. Using the convention that “(+)” denotes a post-measurement update
value and “(-)” denotes a pre-measurement update value, the (optimal) filter measurement
update equations for a linear, sequential estimator are given by

state estimate (1)

error covariance & = [1 - &Ax,]P:) (2)

(optimal) gain matrix ~k = a~’P[-)A~ (3)

where zk is the observation vector defined by the measurement model, Axk is the
measurement matrix of observation partial derivatives, / is simply the unit or identity
marnx, and a~ = AxlPj-)A~ + Wj is the innovations covariance. wk represents the
weighting matrix, the inverse of which is taken to be the diagonal measurement
Covariance Rk; thus, for i = 1, . . . . m observations, W~l s Rk = diag[rl,...,  rd for
measurement variances ri. (It is assumed that the measurements are corrupted by a vector
of independent, zero-mean Gaussian random noise quantities with covariance Rk.) The
filter equations described by Eqs. (1) through (3) can be employed without loss of
generality, since “whitening” procedures can be used to statistically decouple the
measurements in the presence of correlated measurement noise and obtain a diagonal Rk.g
The gain matrix Kk is used to update estimates of the filter parameter~ as each
measurement is processed. Note that Eq, (2) is valid only for the optimal gain ~k.

Use of Eq. (2) to compute the error covariance matrix has historically been suspect
due to finite computer word length limitations.* As a result, a frequently utilized
alternative is the stabi{izcd Joseph form of the update, expressed as.,

P:) = (1 - ~kAxk)pj-)(Z  - KkAxk)T  + KkW;K~ (4)

Al~ough this form of the covariance measurement update is more stable numerically
than Eq. (2), it requires a greater number of computations; however, a further advantage
is that it is valid for arbitrary gain matrices, therefore, Kk in Eq. (4) need not be optimal.

In some cases, the Joseph form of the update may also be deficient numerically .11 As
a result, factorization methods have been developed to help alleviate the numerical
deficiencies of the measurement update algorithms.g~lz~ls Specific details of the
factorization procedures will not be discussed here; however, an important observation
from the literature and critical to the general evaluation mode of the filter is the
observation that Eq. (4) can be written in an equivalent form as

& = () - i&ixk)~j-) + a~(~~-&)(K&)T (5)

● Recall from optimal estimation theo~ that ~e+wor  cwariance matrix is defined to be the expected value of the mean-
square estimation error, Pt - E [(4 - xk)(xl  - x1) :.
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where K~ is an arbitrary (e.g., suboptimal) gain marnx and ~& is the optimal filter gain
matrix. This form of the error covariance measurement update is often referred to as the
suboptimal  measurement update since it includes a correction based on the gain
difference between the falter evaluation run (which generally assumes an incorrect model)
and the original filter (estimation) run. In the general evaluation mode, the filter uses
suboptimal gains saved in an evaluation filter from an earlier filter which is run purposely
with what is believed to be an incorrect model, in order to generate suboptimal  gains.7 It
is this form of the suboptimal measurement update which will be critical to the error
budget development described in a later section. In practice, Eq. (5) is typically
mechanized in a U-D factorized form for numerical stability. A final note about the filter
equations: Although the equations for the time update were not presented, it is important
to note that the time update in the general filter evaluation mode takes the same form as
the original filter time update, except that in the presence of process noise modeling
parameters, the original filter stochastic time constants and process noise uncertainties are
replaced with evaluation mode time constants and process noise terrns.y

MISSION SCENARIO, DATA ACQUISITION,
AND FILTER MODELING ASSUMPTIONS

Mas Obser rver Intemlanetarv Cruise Sce nariQ

The Mars Observer spacecraft was launched successfully on September 25, 1992, and
was scheduled to initiate the Mars Orbit Insertion (MOI) burn on August 24, 1993;
however, communication with the spaccxxaft was tragically lost just days prior to MOI.
Despite the loss of the spacecraft, the interplanetary cruise phase of the mission, which
extended from injection to initiation of the MOI bum, represented a challenging
navigation scenario, as the declination of the Mars Observer at encounter was within 1
deg of zero. This is a geometry which has historically yielded relatively poor

., performance with Doppler tracking, due to Doppler data’s relative insensitivity to some
components of the spacecraft’s state in this regime. The Mars Observer was also the first
spacecraft to carry an X-band transponder and the first to rely solely on a single-
frequency X-band telecommunications system.14 Thus, this scenario represents a realistic
scenario with which to study the relative merits of using the enhanced orbit determination
filter to reduce X-band Doppler and ranging data.

The trajectory segment selected for this analysis was taken to be a 182-day time
period extending from earl y February 1993 to early August 1993, which represented the
longest leg of the interplanetary cruise, and had the most stringent navigation accuracy
requirements in order to support the final maneuver prior to MOI. The trajectory
characteristics over the time span of the data arc, which extended from encounter minus
194 (E-194) days to E–12 days, are summarized in Table 1.

Data Aca uisition Strateuy

A fairly sparse DSN data acquisition schedule was assumed, containing no more than
one or two passes of Doppler and ranging data per week. In all cases, the data were
assumed to be acquired from the DSN’S 34-m High Efficiency (HEF) Deep Space
Stations (DSSS) located near Goldstone, California (DSS 15), Canberra, Australia (DSS
45), and Madrid, Spain (DSS 65), This reduced level of coverage is representative of the
level anticipated for telemetry acquisition in future missions such as Pathfinder and
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Table 1
MARS OBSERVER OUTER CRUISE PHASE TRAJECTORY

CHARACTERISTICS OVER AN ASSUMED DATA ARC EXTENDING FROM
E-1 94 DAYS TO E-1 2 DAYS

12LEmim Value

Earth-to-spacecraft range, km 80X I@ to 330 X I@
Geocentric declination, deg 22 to 1
Sun-Earth-probe angle, deg 125 to 45

Cassini.  ThedaMschdule  consistd  ofonehonzon-to-hotizon  tiacking passoftwo-way
Doppler and ranging data acquired from the Madrid site on a weekly basis from E-194
days to E--9O days, two weekly tracking passes acquired from the Madrid and Canberra
sites from E–90 days to E–30 days, and from E–30 days to E–12 days (data cutoff), a
single pass per day from all three DSN sites.

To account for data noise, an assumed one-sigma random measurement uncertainty of
0.0126 mm/s was chosen for two-way Doppler, and for two-way ranging, the one-sigma
random measurement uncertainty was assumed to be 1 m; these noise variances were
used in all cases in a manner similar to an earlier study.z It should be noted that the data
weights quoted here are for the round-trip range-rate and range, respectively. Both data
types were collected at a rate of one point every 10 rein, and the noise variances were
adjusted by an elevation-dependent function for all stations, to reduce the weight of the
low-elevation data; furthermore, no data were acquired at elevations of less than 10 deg.

-4 9rb it Determination Filter Mo@J

Table 2 summarizes the parameters which makeup the enhanced orbit determination
filter model, along with a priori statistics, steady-state uncertainties for the Gauss-
Markov parameters, and noise densities for the random walk parameters.* All of the
parameters were treated as filter (estimated) parameters and grouped into three
categories: spacecraft epoch state, spacecraft nongravitational force model, and ground
system error model. Effects of uncertainty in the ephemeris and mass of Mars were
neglected, as they were believed to be relativel y small in this scenario, 15

The simplified spacecraft nongravitational force model was based on past experience
and modeling of spacecraft similar to Mars Observer. 14 There were filter parameters
representing solar radiation pressure forces as well as small anomalous forces due to gas
leaks from valves and pressurized tanks, attitude control thruster misalignments, etc. For
processing the two-way ranging data, the filter model included a stochastic bias
parameter associated with each ranging pass from each station, in order to approximate

● For process noise, first-order Gauss-Markov  exponentially correlated) random processes were assumed. The
process noise covanance is given byq = (]-n? $ SJ where m =ex~-(ffil  - /j)/t].  Here, fj is the start time for thejh batch
and z is the assoaatad time constant. Tho term u,, is the steady-saw  un~rtainty,  i.e., the noise level that would be
reached if the dynamical system were left undismhti  for a time much greater than ?, For the random walk, both u,,
and r are unbounded (?= w and a steady-state is never reached. The noise density for the random walk is
characterized by the rate of change of the pr~ss noise covarianca, ~ ~ /& where Af is the batch size and Aq is
the amount of noisa added per batch. For this analysis, AI = 10 min.

6



,.

Table 2
ENHANCED ORBIT DETERMINATION FILTER WITH

GROUND-SYSTEM ERROR MODEL REPRESENTATIVE OF CURRENT
DSN CALIBRATION ACCURACY

position components
velocity components

solar radiation pressure:
radial (GJ
transverse (GJGY)

anomalous accelerations:
radial (ar)
transverse (aJay)

-~
range biases (one per station
per pass, ranging data only)

DSN station locations:
spin radius (r~)
z-height (zJ
iongitude (A)

Earth orientation:
. . pole orientation

rotation period

transmission media:
zenith troposphere
(each station)

zenith ionosphere
(each station)

a pn”ori
l@km
1 krnk

a pn-on;
1 o% (=0.13)
1 o% (=0.01 )

stead -state,
110-1 km/s2

10-i2 krnkp

a priori,
4m

a pnon:
0.18 m
0.23 m

3.6 x 10-8 rad

steady-state,
1.5x  10~rad

0.2 ms

a pnon;
5 cm

steady-state,
3 cm

constant
parameters

constant
parameters

Markov  parameters,
10- day time constant
10- day time constant

uncorrelated  from
pass to pass

constant parameters,
relative uncertainty
between stations is

lto2cm

Markov parameters
1-day time constant
12-hr time constant

random walk,
1 cm2/hr  (current)

Marl(ov  parameters
4-hr time constant

the slowly varying, nongeometric delays in ranging measurements that are caused
principally by station delay calibration errors and uncalibrated solar plasma effects. No
explicit model parameters were employed for the effect of solar plasma delays as
relatively large (>45 to 60 deg) Sun-Earth-Probe (SEP) angles were assumed for ranging
data acquisition, leading to small (<1 m) solar plasma delays. (In a rwent demonstration
with the Ulysses spacecraft, a simple solar plasma delay model was successfully used in
the reduction of precision ranging data.lb)

The station location covariance represents the uncertainty in the station location and
pole model solutions developed by Finger and Folkner; 17 this covariance matrix and its
associated station location set were used operationally by the Mars Observer Navigation
Team during interplanetary cruise. 18 Additionally, three exponentially correlated process
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noise parameters were included to account for the dynamical uncertainties in the Earth’s
pole location and rotation period. The tropospheric and ionospheric zenith delay
calibration uncertainties were representative of current calibration accuracy. A sequential
U-D factorized estimation scheme was employed, in order to track the short-term
fluctuations in the transmission media.

ERROR BUDGET CALCULATIONS

The purpose of developing an error budget is to determine the contribution of
individual error sources, or groups of error sources, to the total navigational uncertainty.
In general, an error budget is a catalog of the contributions of all of the error sources
which contribute to errors in the filter estimate at a particular point in time, whether
explicitly modeled in the filter or not.s For this first analysis, it is assumed that the filter
is “optimal,” i.e., that the truth model and filter model are the same. This implies that the
filter model is an accurate representation of the physical world.

In order to establish an error budget, it is necessary to compute a time history of the
filter gain matrix for the complele filter model and to subsequently use these gains in the
sensitivity calculations [Eq. (4)] during repeated filter evaluation mode runs, in which
only selected error sources or groups of error sources are “turned on” in each particular
run. In this way, the individual contributions of each error source or group of error
sources to the total statistical uncertainty obtained for all of the filter parameters for a
given radio mernc data set can be established,

Using the reduced data schedule and enhanced filter model derived for the Mars
Obsexver interplanetary cruise scenario, described in Section III, orbit determination error
statistics were computed for DSN Doppler-only, ranging-only, and Doppler-plus-ranging
data sets. The orbit determination statistics were propagated to the nominal time of Mars
encounter and expressed as dispersions in a Mars-centered aiming plane, or B-plane,:4
coordinate system;* specifically, the one-sigma magnitude uncertainty of the miss vector,
resolved into respective miss components B*R (normal to Martian equatorial plane) and
B*X (parallel to Martian equatorial plane), and the one-sigma uncertainty in the linearized
time-of-flight (LTOF). The LTOF defines the time from encounter (point of closest
approach) and specifies what the time of flight to encounter would be if the magnitude of
the miss vector were zero. In some cases, the errors were expressed as dispersion ellipses
in the B-plane, to graphically illustrate the contributions of the most statistical y
significant groups of error sources,

Dopt) Ier Only

With the enhanced filter, the Doppler data were able to determine the B*R component
of the miss vector to about 22 km and the BoX component to about 46 km, with the LTOF
being determined to approximate] y 7 sec (-16 km in positional uncertainty). These
results are summarized in Table 3, which gives the magnitude of the B-plane dispersions
around the nominal MOI aim point (in the form of an error budget) for all groups of

● The aiming plane, or B-plane, coordinate systam is defined by three unit vectors, S, I, and R; S is parallel to the
spacecraft velocity vector relative to Mars at the time of entry into khrs’ gravitational sphere of influence, X is parallel
to the Martian equatorial plane, and R completes an orthogonal triad with ~ and ~. The aim point for planetary
encounter is defined by the miss vector, B, which lies in the 1-R plane and specifies where the point of closest
approach would be if the target planet had no mass and did not deflect the flight path.
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Error
Source
Q3M12

Table 3
ENHANCED FILTER ERROR BUDGET FOR

DSN X-BAND DOPPLER-ONLY NAVIGATION

Epoch state
SRP parameters
Nongravitational accelerations
Ionosphere
Troposphere

Station locations
Earth orientation
Measurement noise

TOTAL (root-sum-square)

2.92
10.25
16.52

1.87
3.56
4.29
6.23
3.45

.—

21.72

&P1ane Dispersions (1 cr)

8.33
27.69
30.61

3.82
6.65
4.63

14.58
6.41

45.90

LTOF
w

0.75
2.16
4.95
0.89
1.50
1.59

3.43
1.50

7.02

truth/filter model error sources to the total statistical uncertainty, in a root-sum-square
sense. (Recall that for this analysis, the truth model and filter model are the same.) As
seen from the table, the most dominant error source groups were the random
nongravitational accelerations, followed by solar radiation pressure coefficient-,
uncertainty, and random Earth-orientation calibration errors. A graphical illustration of
these contributions is shown in Fig. 1, in terms of B-plane dispersion ellipses.
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For this encounter scenario, the direction of the Earth-spacecraft range is closely
aligned with the semi-major axis of the B-plane dispersion ellipse. The Doppler data
alone were only able to determine this component of the solution to about 50 km.

Ra _nuina Only

Orbit solutions computed with ranging data using the enhanced filter are summarized
in Table 4, also in error budget format. In this case, the ranging data were able to
determine the BcR component of the miss vector to about 12 km and the B*X component
to about 6 km. The LTOF accuracy for this case was not much better than the Doppler-
only case, an improvement from 7 sw to approximately 6 sec (-14 km in positional
uncertainty). The most dominant error source groups for this data strategy, as in the
Doppler-only case, were random nongravitational accelerations, followed by
measurement (data) noise, and DSN station location uncertainty.

Table 4
ENHANCED FILTER ERROR BUDGET FOR

DSN X-BAND RANGING-ONLY NAVIGATION

Error
Source
m

Epoch state
SRP parameters
Nongravitational accelerations

:. , Ionosphere
Troposphere
Station locations
Earth orientation
Range biases
Measurement noise

TOTAL (root-sum-square)

B*R
Q@

0.27
2.26
7.27
0.78
1.54
5.36
2.47
2.06
6.59

—-. —

11.98

B-Plane Dispersions (1 O]

0.13
1.11
3.54
0.39
0.75
2.63
1.26
1.00
3.21

5.86

LTOF
Qi@

0.23
0,91
4.13
0.27
0.64
2.66

0.63
0.97
3.18

6.08

Although range bias parameters were included in the ground system error model, they
did not adversely affect the performance of the enhanced filter. Figure 2 illustrates these
major error sources in terms of B-rdane dis~ersion ellimes along with the full filter-
generated root-sum-square uncertai~~ty. The &ientation o~ the full ~lter dispersion ellipse
is rotated about 90 deg from the Doppler-only result, indicating the strength with which
the ranging data are able to determine the Earth-spacecraft range component of the
trajectory. In this case, the semi-major axis is oriented roughly normal to the Earth-Mars
line.
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For the final case in which both Doppler and ranging data were used, the B*R
component of the miss vector was determined to about 9 km and the BoX component to
about 5 km, with the LTOF being determined to approximately 4 sec (-9 km in positional
uncertainty). Error budget calculations for this case are summarized in Table 5. Similar
to the results for the Doppler-only and ranging-only data strategies, random
nongravitational accelerations were the dominant error source group. The next two most
significant error source groups were Earth-orientation calibration error and DSN station
location uncertainty, respectively.

As with the ranging-only case, solar radiation pressure coefficient uncertainty and
random ranging delay calibration errors were of roughly the same magnitude, but did not
contribute to the total error budget as much as the previously cited error sources, B-plane
dispersion ellipses are also provided (see Fig. 3), illustrating the contributions of the
major error source groups to the total root-sum-square error and the orientation of the
ellipses in the aiming plane. In this case, the accuracy with which the Earth-spacecraft
range component at encounter was determined was roughly 11 km.
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Table 5
ENHANCED FILTER ERROR BUDGET FOR

DSN X-BAND DOPPLER-PLUS-RANGING NAVIGATION

~-plane DisDersions (10)
Error
Source B*R B*I LTOF
QQW m ~ See)

Epoch state 0.10 0.05 0.10
SRP parameters 1.57 0.76 0.64
Nongravitational accelerations 5.73 2.83 2.87
Ionosphere 0.87 0.41 0.56
Troposphere 1.46 0.69 0.81

Station locations 2.99 1.53 0.97
Earth orientation 2.98 1.50 1.26
Range biases 1.40 0.67 0.68
Measurement noise 5.11 2.46 2.51

..—

TOTAL (root-sum-square) 9.17 4.51 4.35

SENSITIVIN CURVES
.,

Another benefit of the linearity assumptions used to develop error budgets is that
sensitivity curves can readily be generated. Sensitivity curves graphically illustrate the
effects of using different prescribed values of the error source statistics on the estimation
errors, with the assumption that the filter model remains unchanged. The procedure for
sensitivity curve development is straightforward,f’  and is repeated here for completeness:
(1) subtract the contribution of the error source under consideration from the total mean-
square navigation error, (2) to compute the effect of changing the error source by a preset
scale factor, multiply its contributions to the mean-square errors by the square of the
scale factor value, (3) replace the original contribution to mean-square error by the one
computed in the previous step; and (4) take the square root of the newly computed mean-
square error to obtain the total root-sum-square navigation error.

Several cases were used to generate sensitivity curves for the major groups of error
sources in the filter model; for example, Figs. 4 through 6 give the sensitivity curves for
the random nongravitational accelerations and illustrate the sensitivity of this error source
group to various scale factor values. Recall that random nongravitational accelerations
dominated the error budget in all three data strategy cases considered (cf., Section IV).
As seen fmm the figures, a quadratic growth in the sensitivity is evident for scale factor
values ranging from 1 to 3, and a nearly linear growth is exhibited for scale factor values
ranging from 4 to 10. On average, for all three data strategies considered, an order of
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magnitude increase in the preset scale factor resulted in about a factor of three to six
increase in the root-mean-square estimation errors.

SUMMARY AND CONCLUSIONS

A sensitivity analysis was conducted for a recently developed sequential data filtering
strategy referred to M the enhanced orbit determination filter.  In practice, the enhanced
filter attempts to represent all or nearly all of the principal ground system error sources
affecting radio metric data types as filter parameters. Reduced-order filtering methods
were reviewed and utilized to perform the sensitivity analysis, and, in particular, to
develop navigation error budgets for three different data acquisition strategies. The
mission scenario assumed for the analysis was based on the Mars Observer interplanetary
outer cruise phase. Two-way radio Doppler and ranging were the data types analyzed,
with assumed accuracies chosen to reflect actual performance of the DSN’s X-band
tracking system, as observed in recent interplanetary missions such as Magellan, Ulysses,
and Mars Observer.

Error budget computations performed for the assumed mission scenario revealed that
the most significant error source for all three data acquisition strategies studied (i.e.,
Doppler-only, ranging-only, and Doppler-plus-ranging) was spacecraft random
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nongravitational accelerations, indicating that, for the reference error model, the
enhanced filter is most sensitive to mismodeling of small anomalous forces affecting the
spacecraft. Other sources of error which had a significant impact on the overall error
budget were, in the case of Doppler-only navigation, solar radiation pressure coefficient
uncertainty and Earth-orientation calibration error. In the case of ranging-only
navigation, measurement noise and Earth-orientation calibration error were the other
significant contributors to the overall error budget. Earth platform errors, namely DSN
station location uncertainty and Earth-orientation calibration error, were the next most
significant contributors to the overall error budget for the Doppler-plus-ranging
navigation case. These results suggest that if high precision navigation performance is to
be achieved, the error sources requiring the most accurate modeling are spacecraft
nongravitational accelerations and Earth platform calibration errors. Future work will
focus on the use of Monte Carlo simulation techniques to evaluate the sensitivity of the
enhanced orbit determination filter to a variety of truth model assumptions, and will
include additional model parameters to account for trajectory correction maneuver
execution errors and uncalibrated solar-plasma delays.
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